Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Intelligent Driver Model (IDM) is one of the widely used car-following models to represent human drivers in mixed traffic simulations. However, the standard IDM performs too well in energy efficiency and comfort (acceleration) compared with real-world human drivers. In addition, many studies assessed the performance of automated vehicles interacting with human-driven vehicles (HVs) in mixed traffic where IDM serves as HVs based on the assumption that the IDM represents an intelligent human driver that performs not better than automated vehicles (AVs). When a commercially available control system of AVs, Adaptive Cruise Control (ACC), is compared with the standard IDM, it is found that the standard IDM generally outperforms ACC in fuel efficiency and comfort, which is not logical in an evaluation of any advanced control logic with mixed traffic. To ensure the IDM reasonably mimics human drivers, a dynamic safe time headway concept is proposed and evaluated. A real-world NGSIM data set is utilized as the human drivers for simulation-based comparisons. The results indicate that the performance of the IDM with dynamic time headway is much closer to human drivers and worse than the ACC system as expected.more » « less
-
Semiactive model predictive control (sMPC) can be very effective, but its computational cost due to the inherent mixed-integer quadratic programming (MIQP) optimization precludes its use in real-time vibration control. This study proposes training neural networks (NNs) to predict in real-time only the MIQP's integer variables' values, called a strategy, for a given structure state. Because the number of strategies is exponential in the number of sMPC horizon steps, the resulting NN can be massive. This study proposes to reduce the NN dimension by exploiting the homogeneity-of-order-one nature of this control problem and, using state vector statistics, to efficiently choose training samples. The single large NN is proposed to be split into several much smaller NNs, each predicting a strategy grouping, that together uniquely and efficiently predict the strategy. Given the strategy's integer values, the MIQP optimization reduces to a quadratic programming (QP) problem, solved using a fast QP solver with proposed adaptations: exploiting optimization efficiencies and bounding sub-optimality; using several NN predictions; and reverting to a simpler (suboptimal) semiactive control algorithm upon occasional incorrect NN predictions or QP solver nonconvergence. Shear building examples demonstrate significant online computational cost reductions with control performance comparable to the conventional MIQP-based control.more » « less
-
In this paper, we showcase a framework for cooperative mixed traffic platooning that allows the platooning vehicles to realize multiple benefits from using vehicle-to- everything (V2X) communications and advanced controls on urban arterial roads. A mixed traffic platoon, in general, can be formulated by a lead and ego connected automated vehicles (CAVs) with one or more unconnected human-driven vehicles (UHVs) in between. As this platoon approaches an intersection, the lead vehicle uses signal phase and timing (SPaT) messages from the connected intersection to optimize its trajectory for travel time and energy efficiency as it passes through the intersection. These benefits carry over to the UHVs and the ego vehicle as they follow the lead vehicle. The ego vehicle then uses information from the lead vehicle received through basic safety messages (BSMs) to further optimize its safety, driving comfort, and energy consumption. This is accomplished by the recently designed cooperative adaptive cruise control with unconnected vehicles (CACCu). The performance benefits of our framework are proven and demonstrated by simulations using real-world platooning data from the CACC Field Operation Test (FOT) Dataset from the Netherlands.more » « less
-
In this paper, we investigated the performance of cooperative adaptive cruise control (CACC) algorithms in mixed traffic environments featuring connected automated vehicles (CAVs) and unconnected vehicles. For CAVs, we tested the recently proposed linear feedback control approach (Linear- CACCu) and adaptive model predictive control approach (A- MPC-CACCu) which have been tailored to extend CACC to mixed traffic environments. In contrast to most literature where CACC design and evaluation are performed on freeways, we focused on urban arterial roads using the CACC Field Operation Test Dataset from the Netherlands. We compared the performances of Linear-CACCu and A-MPC-CACCu to regular adaptive cruise control (ACC), where automated vehicles do not rely on connectivity, as well as human drivers. Performance comparison was done in terms of ego vehicle’s spacing error, acceleration, and energy consumption which relate to safety, driving comfort, and energy efficiency, respectively. Simulation results showed that CACCu algorithms significantly outper- formed the ACC and human drivers in these metrics. Moreover, we found that the fluctuations of the lead vehicle’s behavior due to changes in traffic signal phase have a significant impact on which CACCu is optimal (i.e., A-MPC-CACCu or Linear- CACCu). Thus, the CACC mode could be switched based on the expectation of traffic signal phase changes to assure better performance.more » « less
An official website of the United States government
